Role of branched-chain amino acid transport in Bacillus subtilis CodY activity.
نویسنده
چکیده
UNLABELLED CodY is a branched-chain amino acid-responsive transcriptional regulator that controls the expression of several dozen transcription units in Bacillus subtilis. The presence of isoleucine, valine, and leucine in the growth medium is essential for achieving high activity of CodY and for efficient regulation of the target genes. We identified three permeases-BcaP, BraB, and BrnQ-that are responsible for the bulk of isoleucine and valine uptake and are also involved in leucine uptake. At least one more permease is capable of efficient leucine uptake, as well as low-affinity transport of isoleucine and valine. The lack of the first three permeases strongly reduced activity of CodY in an amino acid-containing growth medium. BcaP appears to be the most efficient isoleucine and valine permease responsible for their utilization as nitrogen sources. The previously described strong CodY-mediated repression of BcaP provides a mechanism for fine-tuning CodY activity by reducing the availability of amino acids and for delaying the utilization of isoleucine and valine as nitrogen and carbon sources under conditions of nutrient excess. IMPORTANCE Bacillus subtilis CodY is a global transcriptional regulator that is activated by branched-chain amino acids (BCAA). Since the level of BCAA achieved by intracellular synthesis is insufficient to fully activate CodY, transport of BCAA from the environment is critical for CodY activation, but the permeases needed for such activation have not been previously identified. This study identifies three such permeases, reports their amino acid transport specificity, and reveals their impact on CodY activation.
منابع مشابه
Additional targets of the Bacillus subtilis global regulator CodY identified by chromatin immunoprecipitation and genome-wide transcript analysis.
Additional targets of CodY, a GTP-activated repressor of early stationary-phase genes in Bacillus subtilis, were identified by combining chromatin immunoprecipitation, DNA microarray hybridization, and gel mobility shift assays. The direct targets of CodY newly identified by this approach included regulatory genes for sporulation, genes that are likely to encode transporters for amino acids and...
متن کاملIdentification and functional characterization of the Lactococcus lactis CodY-regulated branched-chain amino acid permease BcaP (CtrA).
Transcriptome analyses have previously revealed that a gene encoding the putative amino acid transporter CtrA (YhdG) is one of the major targets of the pleiotropic regulator CodY in Lactococcus lactis and Bacillus subtilis. The role of ctrA in L. lactis was further investigated with respect to both transport activity as well as CodY-mediated regulation. CtrA is required for optimal growth in me...
متن کاملIntermediate Levels of Bacillus subtilis CodY Activity Are Required for Derepression of the Branched-Chain Amino Acid Permease, BraB
The global transcriptional regulator, CodY, binds strongly to the regulatory region of the braB gene, which encodes a Bacillus subtilis branched-chain amino acid (BCAA) permease. However, under conditions that maximize CodY activity, braB expression was similar in wild-type and codY null mutant cells. Nonetheless, expression from the braB promoter was significantly elevated in cells containing ...
متن کاملCodY regulates expression of the Bacillus subtilis extracellular proteases Vpr and Mpr.
UNLABELLED CodY is a global transcriptional regulator in low-G+C Gram-positive bacteria that is responsive to GTP and branched-chain amino acids. By interacting with its two cofactors, it is able to sense the nutritional and energetic status of the cell and respond by regulating expression of adaptive genetic programs. In Bacillus subtilis, more than 200 genes, including those for peptide trans...
متن کاملMolecular mechanisms underlying the positive stringent response of the Bacillus subtilis ilv-leu operon, involved in the biosynthesis of branched-chain amino acids.
Branched-chain amino acids are the most abundant amino acids in proteins. The Bacillus subtilis ilv-leu operon is involved in the biosynthesis of branched-chain amino acids. This operon exhibits a RelA-dependent positive stringent response to amino acid starvation. We investigated this positive stringent response upon lysine starvation as well as decoyinine treatment. Deletion analysis involvin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of bacteriology
دوره 197 8 شماره
صفحات -
تاریخ انتشار 2015